Você está aqui Mundo Educação Matemática Operações com os números racionais

Operações com os números racionais

As operações com os números racionais envolvem os inteiros, as frações e os decimais.

Operações com os números racionais
Soma, subtração, divisão e multiplicação são as operações que podem ser realizadas com os números racionais.

Pertencem ao conjunto dos racionais os números positivos, negativos, decimais, frações e dízimas periódicas. Representamos esse conjunto por meio da letra Q maiúscula:

Lê-se: O conjunto dos números racionais é igual a x, tal que x é igual a (a) sobre (b), (a) pertence ao conjunto dos inteiros e (b) pertence ao conjunto dos inteiros com a ausência do zero.

É possível realizar as quatro operações com os números racionais. Entre essas operações, podemos destacar:

  • Soma de duas ou mais frações:

Para somar duas ou mais frações, é necessário que o denominador em todas as frações seja o mesmo. Após verificar isso ou reduzir os denominadores a um mesmo valor por meio do Mínimo Múltiplo Comum (MMC) ou das frações equivalentes, basta conservar o denominador e somar os expoentes. Veja:

Utilizando o MMC para reduzir os denominadores:

1 + 2 + 4 = 1 + 2 + 4 = 3 + 4 + 24 = 31
2    3          2    3      1          6            6


Cálculo do MMC

2, 3, 1| 2
1, 3, 1| 3
1, 1, 1|

MMC (2, 3, 1) = 2 x 3 = 6

Para obter os números do numerador, foi feito o seguinte:

6 : 2 = 3 x 1 = 3
6 : 3 = 2 x 2 = 4
6 : 1 = 6 x 4 = 24

Utilizando as frações equivalentes:

1 x 3+ 2 x 2+ 4 x 6= 3 + 4 + 24 = 31
2 x 3   3 x 2   1 x6     6     6    6      6

 

  • Soma de dois ou mais números decimais

Na soma de números decimais, juntamos número inteiro com inteiro, parte decimal com decimal, parte centesimal com centesimal e assim por diante. Observe o exemplo abaixo:

2,57 + 1,63 =
2 e 1: partes inteiras
0,5 e 0,6: partes decimais
0,07 e 0,03: partes centesimais

Para resolver a soma de números decimais, podemos estruturar o algoritmo da adição.

   2,57
+ 1,63
   4,20
 

Podemos também somar números decimais por meio de frações. Para isso, basta transformar cada número decimal em uma fração. Confira o exemplo abaixo:

 

2,57 + 1,63 = → Represente os números decimais na forma de fração;
= 257 + 163 = → Como o denominador em ambas as frações é 100, podemos somá-los.
   100    100
= 420 = → Realize a divisão de 420 por 100.
   100
= 4,20

  • Subtração de duas ou mais frações:

O processo de subtração de fração é semelhante ao da soma. A diferença está no sinal da operação, que será de menos. Observe:

5 3 – 2 = 5 +( – 3 ) + ( – 2 )= 20 – 9 – 24 = – 13
3    4         3     ( 4 )                       12             12

Cálculo do MMC:

3, 4, 1| 2
3, 2, 1|2
3, 1, 1|3
1, 1, 1|

Para obter os números do numerador, fizemos o seguinte:

12 : 3 = 4 x 5 = 20
12 : 4 = 3 x – 3 = – 9
12 : 1 = 12 x – 2 = – 24
 

  • Subtração de dois ou mais números decimais:


Devemos subtrair número inteiro com inteiro, parte decimal com decimal, parte centesimal com centesimal e assim por diante. Confira o exemplo abaixo:

3,15 – 2,04 – 1 =

Para resolver essa subtração de números decimais, devemos subtrair os dois primeiros termos da esquerda para a direita (3,15 – 2,04).

  3,15
- 2,04
  1,11

Agora temos que subtrair 1,11 – 1 =

 1,11
1,00
  0,11

Podemos também resolver o exemplo anterior por meio da subtração de frações. Acompanhe:

3,15 – 2,04 – 1 = → Transforme os números 3,15 e 2,04 em frações.
= 315204 – 1 = → Como os denominadores das frações são iguais, faça a subtração dos numeradores.
   100    100
= 1111 = → Como os denominadores das frações são diferentes, devemos reduzi-los ao mesmo
   100    1        denominador. O MMC (100, 1) é 100.
= 111 – 100 = → Como reduzimos para o mesmo denominador, podemos subtrair os numeradores.
       100
= 11 = → Faça a divisão de 11/100
  100
= 0,11

  • Multiplicação de frações

Na multiplicação de frações, devemos multiplicar os numeradores com numeradores e os denominadores com denominadores. Confira:

3 x 6 = ( 3 x 6 ) = 18 → Como a fração não está na forma irredutível, temos que simplificá-la.
7    4    ( 7 x 4 )    28

3 x 6 = ( 3 x 6 ) = 18 : 2 = 9
7    4    ( 7 x 4 )    28 : 2    14

  • Multiplicação de números decimais

Ao multiplicarmos números decimais, devemos estruturar o algoritmo. Para saber a posição da vírgula no produto obtido, contamos quantas casas decimais possui cada número decimal e deslocamos a vírgula em relação aos algarismos do produto da direita para a esquerda. Observe o exemplo:

2,4 x 1,2 = → Inicialmente estruture o algoritmo da multiplicação.

   2,4
1,2
+ 48
   24
    2,88 → Observe que a vírgula ficou entre os algarismos 2 e 6. Isso aconteceu porque o número 2,4 possui uma casa decimal, e o número 1,2 também possui uma casa decimal. Assim, temos, no total, duas casas decimais. Sendo assim, devemos deslocar a vírgula do produto obtido (288) duas casas da direita para a esquerda (2,88).

Poderíamos também resolver esse exemplo por meio de frações.

2,4 x 1,2 = → Transforme os números decimais em frações.
= 24 x 12 = → Multiplique os numeradores (24 x 12) e os denominadores (10 x 10).
   10    10
= 288 = → Faça a divisão de 288 por 100.
   100
= 2,88

  • Divisão de duas ou mais frações

Para dividirmos duas ou mais frações, utilizamos uma regra prática: conserva-se a primeira fração, multiplicando-a pelo inverso da segunda. Recorde-se que o inverso de uma fração é dado ao trocarmos o seu denominador pelo numerador. Veja:

13 : 9 = 13 x 2 = 26
 7    2     7     9    63

1 : 4 : 2 = (1 : 4 ) : 2 = ( 1 x 5 ) : 2 = 5 : 2 = 5 x 6 = 30 :2 = 15
2    5  6     ( 2 5 )   6    ( 2 x 4 )   6    8   6     8 x 2    16 : 2    8

 

  • Divisão de dois ou mais números decimais
     

Para realizar a divisão de números decimais, devemos igualar a quantidade de casas decimais dos números e efetuar a divisão. Confira o exemplo abaixo:

1,23 : 0,5 = → O número 1,23 possui duas casas decimais, e o número 0,5 possui uma casa decimal. Para igualar a quantidade de casas decimais, devemos multiplicar ambos os números pelo termo decimal, ou seja, 10, 100, 1000..., que possui a maior quantidade de casas decimais. Sendo assim, temos que multiplicar 1,23 e 0,5 por 100.

(1,23 x 100) : (0,5 x 100) = 123 : 50 → Utilizando o algoritmo da divisão, temos 123 : 50.
 123 |50
100 2,46
  230
- 200
  300
- 300
    0

1,23 : 0,5 = 2,46

Veja agora como transformar os números decimais do exemplo anterior em frações:

1,23 : 0,5 = → Transforme os números decimais em frações.
= 123 : 5 = → Aplicando a regra aprendida anteriormente, conserve a primeira fração e
   100  10        multiplique-a pelo inverso da segunda.
= 123 x 10 = → Faça o produto dos numeradores e dos denominadores.
   100     5
= 1230 = → Realize a divisão de 1230 por 500.
    500
= 2,46

  • Soma, subtração, multiplicação e divisão de dízimas periódicas

A dízima periódica é um número decimal em que os algarismos após a vírgula repetem-se infinitamente. Exemplos: 1,222..., 1,2323..., 2,23562356...

A repetição desses algarismos após a vírgula é chamada de período. Veja:

  • O período de 1,222... é 2.

  • O período de 1,2323... é 23.

  • O período de 2,23562356... é 2356.

Para realizar a soma, subtração, multiplicação e divisão de dízimas periódicas, devemos descobrir o período e aplicar as definições aprendidas anteriormente para números decimais, haja vista que a dízima periódica é um número decimal. Vejamos alguns exemplos:

  • Soma de dízima periódica

2,333... + 1,555... =

O período de 2,333... é 3, e o período de 1,555... é 5. Realizando a soma, temos:
  2,3
+1,5
  3,8
 

  • Subtração de dízima periódica

3,6565... - 1,222... =

O período de 3,6565... é 65, e o período de 1,222... é 2. Fazendo o algoritmo da subtração, temos:

  3,65
1,22
  2,43

  • Multiplicação de dízima periódica

5,2323... x 1,111... =

O período de 5,2323... é 23, e o período de 1,111... é 1. Efetuando o produto, temos:

   5,23
x 1,11
   523
+ 523
   523
   5,8053

A multiplicação resultou em: 5,2323... x 1,111... = 5,23 x 1,11 = 5,8053

 

  • Divisão de dízima periódica

2,5252 … : 0,555... =

O período de 2,5252... é 52, e o período de 0,555... é 5. Realizando a divisão, temos:

2,52 : 0,5 = (2,52 x 100) : ( 0,5 x 100) = 252 : 50
 

  252 | 50
250 5,04
  200
- 200
    0

A divisão de: 2,5252 … : 0,555... = 2,52 : 0,5 = 5,04
 

Artigos de "Operações com os números racionais"

Comentários