Você está aqui
  1. Mundo Educação
  2. Física
  3. Mecânica
  4. Estática de um Ponto Material

Estática de um Ponto Material

Para um corpo estar em movimento retilíneo com velocidade constante ou em repouso, o somatório das forças que agem nele deve ser nulo.
A construção de um prédio deve ser planejada de tal forma que o conjunto de forças (peso, normal..., dentre outras) que age nele deve ter como força resultante um valor nulo; caso isso não aconteça, o prédio pode desabar.
Um ponto material sujeito à ação de várias forças estará em equilíbrio se o somatório dessas forças for zero.


Ponto material p em equilíbrio sob a ação de forças

Como mostra a figura, temos um ponto material P sob a ação de quatro forças (F1, F2 e F3 e F4).
A decomposição dos vetores facilitará a obtenção do vetor resultante.
Logo, temos na direção x os vetores: F1x, F2x e F3x.
Tal que: F1x = F1 - F2x = F2.cos45° - F3x = F3.cos30°
E na direção y, temos os vetores: F2y, F3y e F4.
Tal que: F2y = F2.sen45° - F3y = F3.sen30° - F4 = F4

Como o ponto material está em equilíbrio, temos que Fr = 0.
Então: Frx = F1x + F2x - F3x = 0
F1 + F2.cos45° - F3.cos30° = 0
F1 + F2.(√2)/2 - F3.(√3)/2 = 0 na direção x – equação 1

Fry = F2y + F3y - F4 = 0
F1 + F2.sen45 - F3.cos30° = 0
F1 + F2..(√2)/2 - F3.(1/2) = 0 na direção y – equação 2

Temos então o somatório das forças na direção x e na direção y, pelo qual chegamos às equações 1 e 2.
Lembrando que nesta circunstância as forças aplicadas foram reduzidas ao plano bidimensional (Ox – Oy), no entanto podem estar em um plano tridimensional (Ox – Ou – Oz).

Não pare agora... Tem mais depois da publicidade ;)
Publicado por: Frederico Borges de Almeida

Assuntos Relacionados