Você está aqui
  1. Mundo Educação
  2. Física
  3. Mecânica
  4. Vetores unitários

Vetores unitários

Sabemos que existem na Física algumas grandezas que necessitam da identificação de sua intensidade (um número seguido de uma unidade de medida) e de sua orientação espacial (direção e sentido), para ficarem bem caraterizadas. Tais grandezas, em Física, são denominadas grandezas vetoriais.

Associando ao eixo x um vetor , de módulo unitário, que apresente a mesma orientação do eixo, a componente  poderá, assim, ser escrita na forma:

Em que Vx é o número real (positivo, negativo ou nulo) denominado projeção do vetor  no eixo x. Se a componente  tiver o mesmo sentido do eixo x, a projeção de Vx será um número positivo; se tiver sentido contrário, Vx será negativo. Se  for perpendicular ao eixo x, sua projeção Vx será nula.

De forma análoga, associando ao eixo y um vetor , de módulo unitário, com a mesma orientação do eixo, a componente  poderá, assim, ser escrita na forma:

Em que Vy é o número real (positivo, negativo ou nulo) denominado projeção do vetor  no eixo y. Se a componente  tiver a mesma orientação do eixo y, a projeção Vy será um número positivo; se tiver sentido contrário, Vy será negativo. Se  for perpendicular ao eixo y, sua projeção Vy será nula.

Não pare agora... Tem mais depois da publicidade ;)

Vejamos abaixo o seguinte exemplo: vamos considerar os vetores representados a seguir, sabendo que cada quadrículo mede exatamente 1 cm de lado. Determine o módulo do vetor soma ou resultante , dado por .

Vetores de módulos unitários

Resolução

Da figura, obtemos os seguintes dados:

Assim, a resultante  é dada por:



O vetor resultante é a soma de todos os outros vetores

Como os módulos de  e  são iguais a 1, temos:




Vetor Unitário
Vetor Unitário
Publicado por: Domiciano Correa Marques da Silva

Assuntos Relacionados