Você está aqui Mundo Educação Matemática Geometria Círculo e circunferência

Círculo e circunferência

Círculo e circunferência são figuras geométricas planas que se diferenciam apenas pelo fato de o círculo ser limitado pela circunferência.

Círculo e circunferência
Exemplos de círculos coloridos

Círculo e circunferência são duas figuras geométricas muito parecidas, o que pode ocasionar dúvidas sobre as suas definições. Vamos à diferenciação:
 

  • Definição de circunferência

Uma circunferência é um conjunto de pontos pertencentes ao plano que, dado um ponto fixo C, possuem a mesma distância até o ponto C. Em outras palavras, dada a distância “r” e o ponto fixo C, qualquer ponto A que possui a distância de A até C igual a r é um ponto pertencente à circunferência. Matematicamente, podemos representar essa última relação da seguinte maneira:

dAC = r

Tendo em vista a distância entre dois pontos obtida na Geometria Analítica e considerando as coordenadas de A (x,y) e de C (a,b), a relação acima pode ser reescrita da seguinte maneira:

dAC = r

√[(a – x)2 + (b – y)2] = r

(a – x)2 + (b – y)2 = r2

Na Geometria Analítica, essa equação é chamada de equação da circunferência com centro C (a,b) e raio r.

O ponto C é conhecido como centro da circunferência e a distância r é chamada de raio. A figura geométrica formada por um conjunto de pontos desse tipo é a seguinte:

Circunferência de centro C e raio r
Circunferência de centro C e raio r

O ponto C não pertence à circunferência, pois a circunferência é apenas o círculo verde. O ponto A, por sua vez, pertence à circunferência.
 

  • Definição de círculo

O círculo, por sua vez, é uma figura geométrica plana que é definida da seguinte maneira:

Círculo é o conjunto de pontos resultantes da união entre uma circunferência e seus pontos internos. Em outras palavras, o círculo é a área cuja fronteira é uma circunferência.

Círculo: área colorida
Círculo: área colorida

Tomando novamente os conhecimentos vindos da Geometria Analítica, a equação do círculo é praticamente igual à equação da circunferência. A diferença encontra-se no fato de o círculo ser um conjunto de pontos menor ou igual ao raio. A partir disso, temos a seguinte equação:

dAC ≤ r

√[(a – x)2 + (b – y)2] ≤ r

(a – x)2 + (b – y)2 ≤ r2

Dessa maneira, a diferença fundamental entre círculo e circunferência é que o círculo é toda a área interna de uma circunferência. Já essa última é apenas o contorno de um círculo.

Propriedades básicas do círculo e da circunferência

O ponto C, centro da circunferência, não pertence a ela, mas pertence ao círculo. Dessa maneira, dado um ponto A qualquer (lembrando que dAC é a distância entre A e C), as posições relativas entre A e uma circunferência são:

1 – A é ponto da circunferência, se dAC = r;
2 – A é ponto externo à circunferência, se dAC > r;
3 – A é ponto interno à circunferência, se dAC < r;

As posições relativas entre A e o círculo são:

1 – A é ponto do círculo, se dAC ≤ r
2 – A é ponto externo ao círculo, se dAC > r

Qualquer segmento que liga dois pontos pertencentes a uma circunferência é chamado de corda. Quando uma corda contém o centro da circunferência, ela também é chamada de diâmetro. Desse modo, o diâmetro tem o comprimento igual ao comprimento de dois raios e, além disso, é a maior corda encontrada em qualquer circunferência.

Circunferência contendo um exemplo de corda e um exemplo de diâmetro
Circunferência contendo um exemplo de corda e um exemplo de diâmetro 

Dividindo o comprimento de uma circunferência pelo comprimento de seu raio, o número encontrado sempre será, aproximadamente, 6,28. Dessa maneira, pode-se escrever a seguinte relação:

C = 6,28
r          

Dividindo ambos os membros por 2, obtemos o seguinte resultado:

C = 3,14
2r          

Esse resultado é o mesmo da divisão anterior, mas realizado com o diâmetro da circunferência no lugar do raio. Dessa maneira, é possível encontrar o comprimento de uma circunferência tendo em mãos apenas o comprimento de seu raio (ou diâmetro). Assim, é possível definir a fórmula para o comprimento da circunferência:

C = 2πr, em que π é aproximadamente 3,14

O mesmo se aplica ao cálculo do comprimento ou perímetro de um círculo. Contudo, não é possível calcular a área de uma circunferência. A área que é calculada, na realidade, é a área do círculo, e a fórmula utilizada para isso é a seguinte:

A = π.r2

Artigo relacionado
Teste agora seus conhecimentos com os exercícios deste texto
Assista às nossas videoaulas

Assuntos Relacionados