Você está aqui
  1. Mundo Educação
  2. Matemática
  3. Equação
  4. Condições de existência de uma equação do 2º grau através de restrições

Condições de existência de uma equação do 2º grau através de restrições

Existem algumas condições de existência e restrições de uma equação de 2º grau.

Uma equação do 2º grau possui algumas condições de existência envolvendo o valor do discriminante. Os coeficientes de uma equação quadrática determinam os possíveis resultados, por exemplo:

Caso o valor do discriminante seja maior que zero, a equação terá duas raízes reais e diferentes.

O discriminante possuindo valor menor que zero, indica que a equação não possui raízes reais.

Nas situações em que o discriminante assume valor igual a zero, a equação possui apenas uma raiz real.


Vamos desenvolver alguns exemplos relacionados às condições de existência e restrições de uma equação do 2º grau:

Exemplo 1

Determine o valor de k, considerando que a equação 2x² + 4x + 5k = 0 , tenha duas raízes reais e distintas.

Coeficientes:
a = 2, b = 4 e c = 5k

a) duas raízes reais e distintas

Não pare agora... Tem mais depois da publicidade ;)




S = {k ? R / k < 2/5}



Exemplo 2

Vamos determinar o valor de p na seguinte equação: x² – (p + 5)x + 36 = 0, de forma que a equação possua raízes reais e iguais.

Coeficientes:
a = 1
b = p + 5
c = 36


a) raízes reais e iguais


S = {p ? R / p = 7 e p = –17}

Assuntos Relacionados