Você está aqui
  1. Mundo Educação
  2. Matemática
  3. Função
  4. Demonstração das fórmulas das coordenadas do vértice

Demonstração das fórmulas das coordenadas do vértice

A demonstração das fórmulas das coordenadas do vértice de uma parábola depende das raízes da função do segundo grau.

Toda parábola pode ser usada como representação geométrica de alguma função na forma f(x) = ax2 + bx + c, que é chamada de função do segundo grau. Toda função do segundo grau pode possuir a concavidade voltada para cima, e consequentemente um ponto de mínimo, ou a concavidade voltada para baixo, e consequentemente um ponto de máximo. Esse ponto de mínimo (ou de máximo) é chamado de vértice da parábola.

Seja V o vértice de uma parábola e (xv, yv) suas coordenadas, as fórmulas usadas para encontrar essas coordenadas são:

Para demonstrar essas fórmulas, é necessário conhecer uma outra técnica que também pode ser usada pra encontrar as coordenadas do vértice.

Coordenadas do vértice

Observe os pontos em destaque, vértice e raízes, na figura a seguir.

Perceba que a coordenada x do vértice (xv) fica no ponto médio do segmento entre as raízes da parábola, portanto, para encontrar a coordenada xv, podemos calcular a média aritmética entre as raízes da função:

Note também que a imagem da função aplicada no ponto xv é justamente yv, ou seja, f(xv) = yv.

Não pare agora... Tem mais depois da publicidade ;)

Tendo essas informações como base, podemos realizar alguns cálculos simples para encontrar as fórmulas usadas para calcular xv e yv.

Demonstrações das fórmulas

Dada a função f(x) = ax2 + bx + c, podemos usar a fórmula de Bháskara para determinar as fórmulas de xv e yv. Sabendo que as raízes de uma função do segundo grau podem ser encontradas da seguinte maneira:

Logo,

Lembre-se de que:

Podemos, então, substituir os valores de x1 e x2 para encontrar:

Que é justamente a fórmula usada para determinar xv.

A fórmula usada para determinar yv pode ser obtida ao encontrar a imagem da função no ponto xv:

Substituindo o valor de xv, temos:

Para finalizar, basta fazer o procedimento adequado de adição (e subtração) de frações. Esse procedimento depende do mínimo múltiplo comum.

O vértice é o ponto mais alto de uma parábola com concavidade voltada para baixo
O vértice é o ponto mais alto de uma parábola com concavidade voltada para baixo
Publicado por: Luiz Paulo Moreira Silva
Artigo relacionado
Teste agora seus conhecimentos com os exercícios deste texto

Assuntos Relacionados