Você está aqui
  1. Mundo Educação
  2. Matemática
  3. Logaritmos
  4. Equação logarítmica

Equação logarítmica

Podemos resolver uma equação logarítmica quando há uma igualdade entre logaritmos de mesma base ou quando igualamos um logaritmo a um número real.

Quando falamos de logaritmo, devemos nos lembrar de sua definição básica:

log a b = x → ax = b

E quando pensamos em equação logarítmica, devemos unir as ideias de logaritmo com as definições básicas de funções. Alguns tipos principais de equações destacam-se, são eles:

I. Logaritmo e um número real

Acabamos de rever a propriedade básica do logaritmo, em que log a b = xax = b, lembrando que há uma condição de existência, b > 0. Vamos então ver essa mesma ideia através da equação logarítmica:

log 3 (x + 5) = 2
32 = x + 5
x + 5 = 32
x + 5 = 9
x = 9 – 5
x = 4

Vamos substituir o valor encontrado para x a fim de verificar a condição de existência:

x + 5 > 0 → 4 + 5 > 0 → 9 > 0.

Como a condição de existência foi respeitada, concluímos que a solução da equação é x = 4.

Vejamos outro exemplo:

log (3+x) (x2 – x) = 1
(3 + x)1 = x2 – x
x2 – x = 3 + x
x2 – 2x – 3 = 0

Para resolvermos essa equação, vamos utilizar a Fórmula de Bhaskara:

Fórmula de Bhaskara

Resolvendo a Equação - Passo 1

Resolvendo a Equação - Passo 2

Resolvendo a Equação - Passo 3

Resolvendo a Equação - Passo 4

Resolvendo a Equação - Passo 5

Se fizermos x' = 1 + 2, teremos x' = 3. E se fizermos x'' = 1 – 2, teremos x'' = – 1.

Vamos agora substituir os valores encontrados para x a fim de verificar a condição de existência. Para x' = 3, temos:

x2 – x = 32 – 3 = 9 – 3 = 6 > 0

Para x'' = --1,

x2 – x = (-1)2 – (– 1) = 1 + 1 = 2 > 0

Concluímos então que os resultados possíveis para essa equação são x = – 1 e x = 3.

II. Logaritmos de mesma base:

Não pare agora... Tem mais depois da publicidade ;)

Se tivermos uma equação logarítmica do tipo log a n = log a m, já que a base é a mesma, para a igualdade ser verdadeira, é necessário que n = m. É importante ainda que n = m > 0, que é a nossa condição de existência. Vejamos um exemplo prático utilizando equação:

log 2 (4x + 5) = log 2 (2x + 11)

Nesse exemplo, a base 2 é a mesma em ambos os lados da equação, portanto, para a igualdade ser verdadeira, é necessário que 4x + 5 seja igual a 2x + 11, temos então:

4x + 5 = 2x + 11
4x – 2x = 11 – 5
2x = 6
x = 6/2
x = 3

Vamos substituir o valor encontrado para x para verificarmos a condição de existência:

4x + 5 = 4 . 3 + 5 = 12 + 5 = 17 > 0

2x + 11 = 2 . 3 + 11 = 6 + 11 = 17 > 0

Vejamos um novo exemplo:

log (x + 2) (x2 + x) = log (x + 2) 12

As bases dos logaritmos são iguais, então, para que a igualdade seja verdadeira, é necessário que x2 – 2x = 3, temos então:

x2 + x = 12
x2 + x – 12 = 0

Vamos novamente utilizar a Fórmula de Bhaskara:

Fórmula de Bhaskara

Equação - Passo 1

Equação - Passo 2

Equação - Passo 3

Equação - Passo 4

Valor X - 1

Valor X - 2

Substituindo esses valores na condição de existência, temos:

Para x' = 3,

x2 + x = 32 + 3 = 9 + 3 = 12 > 0

Para x'' = – 4,

x2 + x = (– 4)2 + (– 4) = 16 – 4 = 12 > 0

Podemos ainda trabalhar com outros dois tipos de equações, aquelas em que precisamos aplicar as propriedades do logaritmo e outras em que é necessário realizar mudança de base e substituição por uma incógnita. Você pode ver mais detalhes sobre esses casos no texto “Equação Logarítmica II”.

Aprenda a resolver equações logarítmicas
Aprenda a resolver equações logarítmicas
Publicado por: Amanda Gonçalves Ribeiro
Artigo relacionado
Teste agora seus conhecimentos com os exercícios deste texto

Assuntos Relacionados