Você está aqui
  1. Mundo Educação
  2. Matemática
  3. Trigonometria
  4. Fórmulas de arco duplo

Fórmulas de arco duplo

As fórmulas de arco duplo são usadas para calcular seno, cosseno e tangente de um arco multiplicado por 2 ou para realizar operações com esse tipo de razão trigonométrica.

Fórmulas usadas para cálculo de razões trigonométricas envolvendo arcos duplos
Fórmulas usadas para cálculo de razões trigonométricas envolvendo arcos duplos

Os arcos duplos são relações trigonométricas utilizadas para calcular seno, cosseno e tangente de arcos que foram multiplicados por 2. Exemplos onde essas fórmulas podem ser usadas: sen2·30°, cos2·45° e tg2·15°. Observe que:

sen30° = 1
               2

e que:

sen2·30° = sen60° ≠ 1·1
                                2 2

As técnicas utilizadas para o cálculo de razões trigonométricas envolvendo arcos duplos são baseadas nas fórmulas de adição de arcos.

Leia também: O que são razões trigonométricas

Seno

Quando é necessário descobrir o seno da adição de dois arcos “a” e “b”, usamos a seguinte fórmula:

sen(a + b) = sena·cosb + senb·cosa

Para encontrar uma fórmula para o seno de um arco duplo, basta fazer a = b. Assim, substituindo “b” por “a” na fórmula acima teremos:

sen(a + a) = sena·cosa + sena·cosa
sen(2a) = 2·sena·cosa

Essa é a relação usada para determinar o seno de um arco duplo.

Por exemplo: qual o valor de sen120°?

Sen120° = sen2·60° = 2·sen60°·cos60°

Sen120° = 2·3·1
                     2  2

Sen120° = 3
                  2

Cosseno

Quando é necessário calcular o cosseno da soma entre os arcos “a” e “b”, usamos a seguinte fórmula:

cos(a + b) = cosa·cosb – sena·senb

Com o intuito de encontrar uma fórmula para o cosseno de um arco duplo, basta fazer b = a e substituir, por exemplo, “b” por “a” na fórmula acima:

cos(a + a) = cosa·cosa – sena·sena
cos(2a) = cos2a – sen2a

Ainda existem outras duas formas de apresentar essa fórmula. Para encontrá-las, lembre-se que:

sen2a + cos2a = 1
sen2a = 1 – cos2a

Não pare agora... Tem mais depois da publicidade ;)

Substituindo esse resultado na fórmula do cosseno de um arco duplo, teremos:

cos(2a) = cos2a – sen2a
cos(2a) = cos2a – (1 – cos2a)
cos(2a) = cos2a – 1 + cos2a
cos(2a) = 2cos2a – 1

Essa é a segunda fórmula que pode ser usada para calcular o cosseno do arco duplo. A terceira pode ser obtida fazendo o seguinte:

sen2a + cos2a = 1
cos2a = 1 – sen2a

Substituindo esse resultado na primeira fórmula obtida para o cosseno de um arco duplo, teremos:

cos(2a) = cos2a – sen2a
cos(2a) = 1 – sen2a – sen2a
cos(2a) = 1 – 2sen2a

Tangente

A fórmula usada para encontrar a tangente da soma entre os arcos “a” e “b” é:

tg(a + b) =    tga + tgb
                 1 – tga·tgb

Visando determinar a fórmula utilizada para encontrar a tangente de um arco duplo, também faremos a = b e substituiremos “b” por “a” na fórmula acima:

tg(a + b) =    tga + tgb  
                 1 – tga·tgb

tg(a + a) =    tga + tga
                 1 – tga·tga

tg(2a) =     2tga    
             1 – tg2a

Resumo contendo as fórmulas de arco duplo
Resumo contendo as fórmulas de arco duplo

Exemplo: (UFF-RJ/modificada) – Qual é o valor de (sen22°30’ + cos22°30’)2?

Solução: Utilizando produtos notáveis, teremos:

(sen22°30’ + cos22°30’)2
sen2(22°30’) + 2sen22°30’cos22°30’ + cos2(22°30’)

Sabendo que sen2a + cos2a = 1, teremos:

sen2(22°30’) + 2sen22°30’cos22°30’ + cos2(22°30’)
1 + 2sen22°30’cos22°30’

E sabendo que sen(2a) = 2·sena·cosa:

1 + 2sen22°30’cos22°30’

1 + sen(2·22°30’)

1 + sen45

1 + 2
      2

Leia também: Seno, cosseno e tangente

Assista às nossas videoaulas

Assuntos Relacionados