Com o estudo da geometria analítica aprendemos que não é necessário ter dois pontos distintos para formar uma reta, podemos construir uma reta no plano cartesiano conhecendo apenas um de seus infinitos pontos e sabendo o valor do ângulo formado com a reta e o eixo Ox.
Essa outra forma de representarmos uma reta será feita levando em consideração a inclinação da reta e o seu coeficiente angular. Considere uma reta s que intercepta o eixo Ox no ponto M.
A reta s está formando com o eixo Ox um ângulo β. A medida desse ângulo é feita em sentido anti-horário a partir de um ponto pertencente ao eixo Ox. Assim, podemos dizer que a reta s tem inclinação β e o seu coeficiente angular (m) igual a: m = tg β.
A inclinação da reta irá variar entre 0° ≤ β <180°. Veja os exemplos de algumas possibilidades de variação da inclinação da reta e seus respectivos coeficientes angulares:
Exemplo 1:
Nesse exemplo o valor da inclinação é menor que 90º.
Inclinação igual a 45° e coeficiente angular igual a: m = tg 45° = 1.
Exemplo 2:
Nesse exemplo o valor da inclinação da reta é maior que 90° e menor que 180°.
Inclinação igual a 125° e coeficiente angular da reta igual a: m = tg 125° = -2.
Exemplo 3:
Quando a reta for paralela ao eixo Oy, ou seja, tiver uma inclinação igual a 90° o seu coeficiente angular não irá existir, pois não é possível calcular a tg 90°.
Exemplo 4:
Nesse exemplo a reta s é paralela ao eixo Ox, ou seja, seu ângulo de inclinação é igual a 180°, portanto, o seu coeficiente angular será igual a: m = tg 180º = 0.
.jpg)